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motion. One of these is closely given by 1 — f €3, where the
unit of time is the 1-month lunar orbital period; the other is
similarly given by

i V1 ~ ?,)
-1/2

Using the numerical values given by (4), these periods cor-
respond very nearly to 1 month and to 870 months, respec-
tively. Whereas the very long-period motion presents ob-
vious obstacles from the point of view of measurements for
any significant part of even one oscillation, the shortest-period
motion, viz., the coupled nodal-inclination mode of period 1
month, is a distinctly more attractive prospect for observa-
tion. The shortness of the period also justifies neglecting
effects of long-period forcing functions such as the dominant
solar attraction.

In summary, it has been shown that the near-symmetry
of lunar mass distribution leads to sharply distinguishable
dynamic characteristics, and that the mode of shortest period,
almost completely overlooked in the past, is a combined
motion in node and inclination, interrelated in an elementary
manner. The same distinctions should also prove useful as
guides for the construction of Liapunov functions required in
the application of direct methods for the nonlinear stability
problem, where once again the moon should serve as a shining
example in a new class of studies in dynamics.
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An Explicit Guidance Concept
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Nomenclature

= thrust integrals, defined specifically by Eq. (1)
= thrust vector
= time integrals defined specifically by Eq. (3)
= mass
= central body radius vector to vehicle
= slant range vector from target to vehicle
— time
= effective exhaust velocity
— inertial, target centered, Cartesian coordinate system
— coangle between thrust vector and Z axis

IJL = central body gravitational constant = gR2

% = predicted propellant mass fraction to be consumed
during burning

T = burning time
$ = angle between X axis and projection of F in X-Y plane
co = mean motion = {/x/[i"(ro + ^<)131 1/2

Superscript
(•) = derivative with respect to time
Subscript
c = command value
n = refers to value corresponding to nth step
0 = at time zero
t = at landing site
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This development was presented as an Appendix to Ref. 1 at
the ARS Lunar Missions Meeting, Cleveland, Ohio, July IT-
19,1962.
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IN the text of Ref. 1, a solution was obtained for the differ-
ential equation of motion for a particle in a uniform central

force field under the influence of a force F and of a mass m.
This solution is of the form

r = (r0 — B) coscor + (l/co)(r0 + coA) sincor

r = (fo + coA) coscor — co(r0 — B) sincor

where

o m cosco£ dt

B
1 fr F .

— I -^ so} Jo m sinco£ dt

The components of the thrust vector F are assumed to
have the following time-dependent form:

Fx(t) = F(t) cos(0 + 6t)

Fv(t) = F(t) cos(0 + 6t)

F.(f) = F(t) sin(0 + 6f)

(2)

If the thrust is assumed to be constant and 0 and \I/ are as-
sumed to be of the same order as co, then analytic solutions
for A and B may be achieved. These are given below as
Eqs. (3), correct to first order in cor:

Ax = (1/co) [/i cos0 cos;/' —
/2(0 sin0 cos^ +

Ay = 1/co [/i cos0 sin^ —
/2(0 sin0 sin \f/ —

Az = (l/co)(Ji sin0 + /20 cos0)

Bx = Jx cos0 cos;/' — /s(0 sin0 cos)/' +

By = J2 cos0

Bz = J<2 sin0

— /s(0 sin0 sin^ —

0 cos0

cos0)]

cos0)]

> sin)/' cos0)

' COS)/' COS0)
} (3)

where

j = F/m = mr/m

It is now possible to solve explicitly for 0C,0C,^C, and \l/c.
The procedure is as follows. Let there be specified some
final position and velocity vector, rt and f t, which is to be
achieved at time = r. These shall satisfy Eqs. (1). With
this substitution, rearrangement yields

coscor — r ) = —Bco + (f + coA) tan cor

(-*--*}-«\coscor

(4)
JoA + co(B — r) tan cor

where, for convenience, the subscript 0 has been dropped.
Equations (4) yield solutions for A and B as follows:

(5)
A = rt sincor — 1/coAr

B = Ar + r*/co sin cor

where

Ar = r — rt coscor Ar = r — f t coscor

The values attained from Eqs. (5) for A and B, of necessity,
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must have a corresponding value in Eqs. (3). From the
third and sixth of Eqs. (3), a solution is obtained for sin#c and

sin#c =

Bz —
COS0C

(6)

(7)

Similarly, a solution is obtained for sin^c and \l/e from the
second and fifth of Eqs. (3):

- By

.. = (6CJ2

cos#c

(8)

The next logical step in this development is to solve for r
and £, using the first and fourth of Eqs. (3) in combination
with Eqs. (6-9). Unfortunately, this step cannot be carried
through in a straightforward manner. The resulting equa-
tions for £ and r require the simultaneous solution of two
transcendental equations.

Under laboratory conditions, this solution is practical with
the aid of a high-speed computer. However, the system
being developed here is intended for operational use under
anything but laboratory conditions. If the solution did not,
for some reason, converge properly under an off-design condi-
tion, there would not be time to force convergence nor would
there be time to work out new initial values that might result
in convergence.

Rather than attempt the solution just described, it is sug-
gested that two approximations for £ and r be used. These
will result in trajectories that are not flown under constant
thrust. However, the approximations are sufficiently ac-
curate to assure that the throttling range required to ac-
commodate the deficiencies in the solution will be small, on
the order of 2%. This has been verified with a two-degree
of-freedom digital simulation, using Eqs. (6, 7, 10, and 11) for
trajectory control.

The approximations for £ and r are given as

(7 + Vt) > 0 (10)
J^
Kn

where S = r — rt. The K term in Eq. (11) is found in the
following manner: assume that the first time a r is com-
puted during a flight, K(n-i) = 1.0. Compute the thrust
level required to satisfy Eqs. (10) and (11) from Eq. (12):

Fc = (12)

Now compute 0C,0C,^C, and \j/c from the appropriate equa-
tions, and then compute the predicted landing point from
Eqs. (1) and (3). A predicted slant range vector is computed
as

S« = r — r<
Then Kn is found from Eq. (14):

Kn =

(13)

(14)

The K term need not be computed continuously. For most
flights, updating every 10 sec is sufficient. The results
from the digital simulation and the associated error analysis of
this concept are to be reported at a later date.
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Contour Calculations for Chemical
Nonequilibrium Flow
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The problem of a reacting flow expanding through
a divergent nozzle has been examined in the light of
designing nozzle contours to produce specific inter-
relationships among the problem variables. Using
a Pace Electronic analog computer, solutions have
been generated for a variety of parameter restric-
tions. The results show that hydrodynamically
reasonable nozzle shapes may be used to provide a
convenient method of experimentally producing
arbitrary supersonic nonequilibrium flows.

Nomenclature
= reciprocal of dimensionless area A
= dissociation energy
= dimensionless recombination rate,
= dimensionless equilibrium constant,
= recombination rate
= dimensionless term, 4NEA/RTo
= equilibrium constant
= molecular weight
= Avogadro's number
= dimensionless pressure
= dimensionless streamline coordinate
= universal gas constant
= dimensionless temperature
= dimensionless velocity
= mass fraction of dissociated atomic species
= critical throat parameter, poWoVpo
= computer time scale factor
= dimensionless constant,
— dimensionless mass density
= computer time

Subscripts
A = atomic
e = local equilibrium
0 = dimensional throat value

IN this note a method for designing hypersonic nozzle con-
tours for specified thermodynamic requirements is pre-

sented using the governing equations of pseudo-one-dimen-
sional inviscid flow of an ideal diatomic gas undergoing a dis-
sociation reaction. For nonequilibrium flow, where chemical
reactions proceed at finite rates, the flow properties are de-
pendent upon the axial distance traveled. As a result, it is
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